Commonly used in commercial, utility and industrial applications, dry-type transformers are both easier to install and more environmentally friendly than liquid-filled transformers. Since they don’t contain oil, dry-type transformers require no fire-proof vaults, catch basins or venting of toxic gases. They can also be placed indoors, closer to loads, making entire electrical systems more efficient.
Dry-type transformers are frequently used in data centers, industrial plants and other critical facilities, where uptime is essential. This means that engineers must balance system reliability with cost. Because dry-type transformers are larger than liquid-filled ones, it is a high priority for transformer manufacturers to design smaller dry-type transformers to reduce materials costs, while still delivering sufficient dielectric insulation and cooling capacity.
For this case study, UberCloud partnered with ABB and Microsoft Azure. The research team used the open-source CFD package OpenFOAM to simulate the heat transfer of a dry-type transformer unit with varying dimensions. This approach allowed the team to evaluate and compare temperature increases and optimize the transformer design for thermal performance. They had two primary goals for the project:
The CFD model was built in 3D. Although only one-quarter of the geometry was taken into account (because of geometry symmetry), millions of computational cells were still generated. This is why a cloud-based computational platform represented an option to refine the mesh and to speed up the entire evaluation cycle.
The figure above illustrates the two cases simulated. The right-hand size case has lower dimension than the left-hand side one. The blue color part is iron core and the red color part is high-voltage coils. |
The team chose UberCloud’s OpenFOAM containers to complete the simulations. These containers offer several benefits:
The research team found that the cloud-based technology offered significantly higher computational speed, making parametric studies and optimization of transformer designs much faster.
The team also enjoyed an HPC environment free of technical complexity. While this is often obtained using consultants, in this case, the setup was automated and launched with a single command for all ten compute nodes. End users could bring data in, run their workload, visualize results and finally move data back to their workstation, with no training, help pages or installation manuals. Thus the entire process was repeatable; any OpenFOAM user could ask for the same infrastructure and use it within hours.